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Abstract--The problem of local heating and temperature rise induced by dynamic crack growth in elastic- 
plastic solids is studied numerically. Heat generation caused by plastic work dissipation is estimated from 
crack-tip stress and deformation fields obtained separately by two of the authors. The temperature field in 
an Eulerian description is shown to be governed by a convection-dominated flow equation with a singular 
source term that is distributed over an irregular crack-tip region, the active plastic zone. The peak value 
and spatial distribution of the temperature increase are determined using two independent computer codes, 
which are developed by the authors based on an integral representation of the temperature field and on an 
upwind finite., element formulation. The accuracy and reliability of the numerical methods and their 
solutions are studied carefully against exact, closed-form solutions for several specially designed boundary 
value probleras. These methods are used to simulate dynamic fracture tests on AISI 4340 steel specimens, 
and the predicted temperature contours and maximum values are found to be in good agreement with 

those measured and estimated experimentally. 

1. INTRODUCTION 

We communicate in this paper the results of our 
recent numerical stady of temperature field induced 
by dynamic crack propagation in elastic-plastic 
materials. The success of this careful study, as detailed 
in the sequel, paves the road for more realistic, 
coupled and three-dimensional(3D) thermomech- 
anical simulations of dynamic fracture events in 
structural metals. The broad objective of this study is 
to improve our understanding of the phenomena of 
local heating in structural metals induced by energy 
dissipation associated with dynamic crack propa- 
gation in metals. Since material properties usually 
depend on temperature and on the heating and cooling 
history experienced by the material, the magnitude, 
distribution and duration of crack-tip temperature 
rise as a result of c:rack-tip local heating can play a 
significant role in determining whether the crack will 
arrest or continue propagating and whether the crack 
will re-initiate growth after it has been arrested pre- 
viously. From the point of view of structural design 
and evaluation against catastropic failures by dynamic 
fracture, a body of knowledge about what happens 
during dynamic crack propagation will have sig- 
nificant practical implications. To this end, it is noted 
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that irreversible plastic work must be done in order to 
deform a solid inelastically. The energy consumed in 
doing such plastic work is accumulated in the active 
plastic zone and it usually dissipates into the sur- 
roundings in the form of heat. Experiments by Farren 
and Taylor [1] on aluminium, and by Taylor and 
Quinney [2] on copper show that about 90% of the 
plastic work turns into heat, and the rest is retained 
by the solid as stored energy (see [3]). When the rate 
of plastic deformation is sufficiently high, the heat 
generated cannot promptly diffuse away, thus causing 
rapid local heating and temperature increase. Since 
crack propagation is inherently a high strain rate 
event, fast crack growth in elastic-plastic solids is 
usually accompanied by severe crack-tip local heating 
and high temperature increase. In order to understand 
such thermomechanical phenomena in dynamic frac- 
ture, many investigators have strived to determine the 
peak value and spatial distribution of the temperature 
field during dynamic crack growth in elastic-plastic 
solids, such as metals. 

In the area of experimental studies, D611 [4] was 
one of the earlier investigators who estimated the over- 
all heat output at a propagating crack tip. From 
thermocouple measurements on four different poly- 
mer specimens, he found that the heat output due to 
plastic work increases with the crack speed. Fuller et 
al. [5] performed similar tests with liquid crystal films 

677 



678 W. LI et al. 

A 
B 
C 

D 

E 

NOMENCLATURE 

constant p 
constant f~ 
constant ~, r/ 
nondimensionalized distributed heat 
source 
Young's modulus 

mass density [kg m -3] 
geometric domain 
nondimensionalized Xl, x2 coordinates 
of a point in the crack-tip active 
zone. 

k 
K 

m 

P 

Pe 
q 

Q 
T 
I) 

W 

nondimensionalized finite element grid 
size 
thermal conductivity [W m-~ K- l ]  
dynamic stress intensity factor for 
crack propagation [MPa m v2] 
Mach number, v/c~ 
component of the Petrov-Galerkin 
finite element weighting function w 
grid Peclet number, ch/2 
nondimensionalized heat source 
distribution 
heat source distribution [Wm 3] 
temperature rise [K] 
crack propagation speed [m s-i]  
Petrov Galerkin finite element 
weighting function 
argument of K0. 

Greek symbols 
c~ thermal diffusivity [m 2 s-i]  
F boundary of f~ 
t/ material parameter, the coefficient of 

plastic work convertion to heat 

Mathematical symbols, superscripts and 
subscripts 

( D 0( )/Qx~,[l= 1,2 
() d( )/at 
cp specific heat [J K - i  kg-i]  
cs elastic shear wave speed [m s -I] 
fv constant 
fq constant [K] 
ka artificial diffusivity 
K0 the modified Bessel function of the 

second kind of order zero 
n~ unit outward normal vector of F 
w0 conventional Galerkin finite element 

weighting function 
xi crack-tip coordinate system, i = 1, 2 

[m] 
xl nondimensionalized crack-tip 

coordinate system, i = 1, 2 
~0 initial yield stress [Pa] 
~0 initial yield strain 
a~  stress tensor [Pa] 
a,/3 nondimensionalized stress tensor 
eP/3 plastic strain tensor. 

and infrared detectors, as well as thermocouples. They 
estimated that the peak temperature rise near a crack 
that was growing at a speed in the range of 200-650 
m s- l  was about 500 K. A more startling finding was 
reported by Weichert and Sch6nert [6] from radiation 
thermometer measurements, with a maximum tem- 
perature increase of 3200 K for cracks propagating in 
glass and 4700 K for cracks growing in quartz. More 
recently, Bryant et al. [7] conducted tests on two 
titanium alloys. They examined the fracture surface 
of test specimens using scanning electron microscopy 
and noticed droplet-like features at the rim of dimples 
of the fracture surface. They postulated that the drop- 
lets were the molten remnants of the micro-ligaments 
melted during the separation of the material. They 
concluded that the melting point of the titanium alloys 
can be exceeded during rapid crack propagation, 
where nearly adiabatic conditions exist. 

An advanced experimental technique was recently 
developed and utilized successfully by Zehnder and 
Rosakis [8], which can be used to provide full-field 
type measurements of transient temperature dis- 
tributions during dynamic crack propagation events. 
By focusing an array of eight high-speed, indium anti- 
monide infrared (i.r.) detectors at points aligned ver- 
tically to the crack path of AISI 4340 carbon steel 

specimens, they were able to record the real-time tem- 
perature variations at all eight points (four on each 
side of the crack path) as the crack propagates with a 
speed of 1-2 km s-~. The detectors they used can 
focus, without contact with the specimen, on a point 
with a small area of 0.16 x 0.16 mm 2. The points were 
spaced 0.2 mm apart along a line of approximately 
1.56 mm in length. Hence the measurements obtained 
represent detailed and realistic temperature dis- 
tributions around the running crack tip. Zehnder and 
Rosakis noted that the temperature near the crack tip 
can reach its peak value of about 500 K in just two 
microseconds (#s). 

In the area of theoretical studies, models for esti- 
mating temperature rise and distribution in dynamic 
fracture have been proposed by a number of inves- 
tigators (see [5, 9-15]). In the analysis by Rice and 
Levy [9], the classic Dugdale line-yield-zone model 
was employed to derive the crack-tip plastic work 
rate, which was used to estimate the peak temperature 
value, and in the study by Zehnder [10], the plastic 
work rate was estimated from consideration of dis- 
location motions. On the other hand, the plastic work 
rate was given an assumed form in [5, 11, 12] in the 
absence of mechanics solutions, and the temperature 
field was then calculated based on the assumed heat 
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input. In this connection, it is noted that the current 
trend in this area is to estimate the plastic work rate 
distribution direcl:ly from continuum mechanics 
analyses of the crack-tip stress and deformation fields. 
Li et al. [13] analyzed the case of quasi-static, anti- 
plane shear (mode III) crack growth in an elastic- 
plastic solid, with the plastic work rate and its zone of 
distribution derived from an analytic solution in the 
literature. The counterpart analysis of temperature 
rise for the case of dynamic mode I l l  crack growth 
was performed by Douglas and Mair [14]. Sung and 
Achenbach [15] obtained a solution for the case of 
plane strain dynarrdc crack growth in an elastic-like 
viscoplastic solid, which was done with an adiabatic 
approximation and. with the plastic work rate esti- 
mated from a crack-tip asymptotic analysis of the 
stresses and plastic: strain rates. Since these studies 
do not directly model any actual crack growth tests, 
comparisons of their results with experimental 
measurements are not available. Qualitative analysis 
of the moving crack-tip temperature field variation, 
its gradient singularity, and the possible formation of 
shock waves have been performed extensively by Tzou 
(e.g. [16-18]). 

In this and several earlier studies by the authors, a 
2D finite element procedure has been developed to 
investigate both tile mechanics problem and the 
associated energy dissipation and heat transfer prob- 
lem with continuum mechanics concepts. This pro- 
cedure is used to model actual dynamic crack propa- 
gation tests on 4340 steel specimens conducted at the 
California Institute of Technology. The accuracy and 
reliability of the procedure has been carefully exam- 
ined at different stages of its development, both with 
existing analytical and numerical solutions and with 
experimental measurements. Results for the mech- 
anics part of this study have been published previously 
(please refer to [19-24] for details) and will be 
described only brietly in this paper when necessary. 
Hence the emphasis of this paper is on the heat-trans- 
fer part of the modelling. 

As delineated in subsequent sections, the tem- 
perature field induced by a moving heat source is 
governed by the sa:me equation as that for a con- 
vection-dominated heat transfer problem. If  a stan- 
dard finite difference or finite element method is used 
to solve such a problem, erroneous node-to-node 
oscillations or divergence will arise unless unrealis- 
tically fine meshes are employed. Another numerical 
difficulty with the current heat-transfer problem is that 
the source term is distributed over an irregular region 
(the active plastic ;,one), is highly peaked (math- 
ematically singular at the crack tip), and is travelling 
with the crack tip at a very high speed (of the order 
of 1 km s-  ~). To overcome these numerical difficulties, 
a special finite element procedure is developed based 
on the Streamline Upwind Petrov-Galerkin For- 
mulation (SUPG) [25, 26]. Since the accuracy of this 
formulation is only demonstrated in the literature for 
zero or uniformly distributed source terms, the pro- 

cedure is carefully calibrated with specially designed 
boundary value problems that have distributed and 
peaked source terms and closed form solutions. To 
assure the accuracy of the procedure for problems 
without closed form solutions, an alternative numeri- 
cal solution method based on an integral rep- 
resentation of the temperature field for a distributed 
moving heat source in an infinite domain is developed 
and used to generate results for comparison. 

In this paper, we demonstrate that, when combined 
with a successive correction scheme for the solution 
of linear algebraic equations, the SUPG formulation 
can be extended with high accuracy and reliability to 
deal with convection-dominated flow problems, such 
as the present one, that have irregular source terms. 
We also demonstrate that the numerical integration 
method can be carried out accurately with an adaptive 
Simpson's integration algrithm as long as a certain 
parameter is below a critical value. The second 
approach, however, is much more expensive and less 
reliable. Finally, we will model actual dynamic frac- 
ture tests on AIS14340 steel specimens. By taking into 
consideration the fact that about 90% of the total 
plastic work turns into heat, we obtained peak tem- 
perature values near the crack tip that match well with 
experimental measurements for crack speed ranging 
from 730 to 1140 m s-1. The shapes of the computed 
temperature contours also resemble those estimated 
experimentally. Details are given below. 

2. PROBLEM DESCRIPTION 

We are concerned here with the problem of dynamic 
crack propagation in elastic-plastic solids that obey 
the von Mises yield criterion and the associated flow 
rule. To make the problem mathematically and 
numerically tractable, and to simulate the afore- 
mentioned dynamic fracture tests in two dimensions, 
our investigation is confined to the case of steady 
plane stress crack growth under small-scale yielding 
conditions, and all material properties involved will 
be treated as temperature independent, which enables 
less complicated, uncoupled mechanics and heat 
transfer analyses. Under the steady-state and small- 
scale yielding simplifications the problem becomes 
equivalent to that of a semi-infinite crack moving with 
a constant velocity in an otherwise infinite plate, and 
the crack-tip stress, deformation, and temperature 
fields are invarient to an observer who is sitting at the 
crack tip. The problem is illustrated in Fig. 1, with a 
moving and a fixed rectangular Cartesian coordinate 
system, where a(t) is the crack length which depends 
linearly on time t and v is the crack propagation speed. 
For  the purpose of numerical modelling, it has been 
found that a finite domain of sufficient size is enough 
for obtaining adequate solutions. Accordingly, we select 
a moving rectangular domain for the finite element 
mesh, as depicted in Fig. 2, where the size of the 
rectangle and the coordinates are made dimensionless 
by a normalization involving the applied stress inten- 
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Fig. 1. A diagram of crack propagation, where (x'~, x2) is a fixed reference coordinate system ; (xt, x,) is a 
moving system with origin at the crack tip ; and (r, 0) is the associated polar coordinate system. 

sity factor K and the material's initial tensile yield 
stress cr 0. The nondimensional size of 4.5 for the 
domain, which is about 20 times that of the crack-tip 
active plastic zone, has been checked by the authors 
to be more than adequate for the present analysis. For 
example, the temperature field obtained by assuming 
this finite boundary is found to be almost identical to 
that obtained by assuming an infinite boundary (see, 
for example, Fig. 6, where the small difference in front 
of the crack tip is explained in Sections 3.3 and 4.1). 

2.1. Heat  transfer equation 
With respect to the moving coordinate system, the 

governing equation for the temperature field T of the 
heat transfer problem induced by dynamic crack 
growth in elastic-plastic solids is 

k T./~/~ + Q = pcv f" (1) 

where k is the thermal conductivity, p the mass 
density, cp the specific heat, Q the internal heat gen- 
erated per unit time per unit volume. Indicial 
notations and its associated conventions are adopted 
both here and in the sequel, with Greek indices having 
values 1 and 2. Hence, subscripts following a comma 
denote spatial partial differentiation and repeated 
indices imply summation. Also, a dot over a variable 
means material time differentiation, which for the case 
of steady crack growth can be related to the spatial 
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Fig. 2. A coarse representation of the finite element mesh 
used in the present computation. 

partial derivative ( ).~ to (') = - v( )•~. Consequently, 
the heat transfer governing equation can be put in the 
following form 

T m~ + (vice) T ,  = - Ql'k (2) 

where c~ = k/pcp is the thermal diffusivity. 

2.2. Heat  source distribution 
Since heat is generated by means of the con- 

sumption of plastic work, the heat source term Q is 
distributed only over the crack-tip active plastic zone, 
which translates with the propagating crack tip but is 
stationary if viewed in the moving coordinate system. 
The shape of the crack-tip plastic zone under small- 
scale yielding conditions and for several classes of 
elastic-plastic materials is available for various crack 
propagation speeds from [21-23]• The case shown in 
Fig. 3 is from [21] for a linear hardening solid, where 
the hardening coefficient :~, which is different from 
that used for thermal diffusivity, is the ratio between 
the slope of the plastic stress strain line and that of 
the elastic stress~strain line (the Young's modulus), 
and m = v /c ,  the Mach number, is the ratio of the 
crack speed over the material's elastic shear wave 
speed. At each point of the active plastic zone, Q 
equals a fraction of the total plastic work rate and can 
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.30 

- -  m =  . 0  

. . . . . .  m =  . 3  

, . . . . . .  . - . . . . . . .  m -  . 4  

• . . . . . . . .  m = . 5  
m m 

• 2 0  

N 

"~ .15 ' 

.,o 7/ ,';/ 

. O 0  

- . 0 5  ' ' ' ' J ~ ~ 

- . 1 5  - . l O  - .Q5 .00 .05 . t 0  .15 .20 .25 .30 .36 

X , / (K /oe )=  

Fig. 3. Crack-tip active plastic zones for various Mach 
numbers, where the coordinates are normalized and the ori- 

gin is at the crack tip (from ref. [22]). 
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be derived in terms of the stress and plastic strain rate 
fields as 

Q = r;a~..~.~ = - tlva~,~c,~.~,j (3) 

where o'/~ 7 and ~r denote respectively the 2D stress and 
plastic strain tensor components, and the coefficient ~/ 
is a material parameter that measures the ratio of 
plastic work convertible to heat. For metals, q has 
been shown experinaentally to be around 0.9. 

Besides its peculiar region of distribution, the heat 
source associated with dynamic crack propagation in 
elastic-plastic solids has another special feature. As 
shown in [21-23], the stress and/or plastic strain fields 
are always mathematically singular at the crack tip, 
which represents the asymptotic tendency of the mech- 
anics fields when the crack tip is approached. As such, 
the resulting heat di:~tribution function Q is also singu- 
lar at the crack tip, although the induced temperature 
field is bounded there. For ideally plastic solids, linear 
hardening solids and power-law hardening solids, Q 
can be calculated according to equation (3) from the 
stress and plastic strain fields from separate studies by 
two of the authors 121 23]. 

2.3. Nondimensiona~' normal i za t ions  
For the sake of generality, the stress and defor- 

mation fields in [21-23] have been obtained in non- 
dimensional forms, which is made possible with the 
use of special normalizations. In order to utilize the 
same finite element mesh as that used for the stress 
analysis and to derive the plastic work rate from the 
mechanics fields, we adopt those special nor- 
malizations here. Hence we normalize the coordinates 
with (K/o'0) 2, the crack speed with cs, a~./with a0, and 
~;. with e0 where e~ is the ratio between a0 and the 
Young's modulus E. It is understood that, unless 
specified otherwise, subsequent appearances of these 
variables are in the nondimensional forms. However 
the Mach number m will be used in place of the nor- 
malized crack speed v. With these normalizations, the 
governing equation (2) can be re-written in terms of 
the nondimensional coordinates, stresses, and plastic 
strains as follows 

where 

fT 

TB~ - f r T ,  =fqq (4) 

K2mcs K2mcs 
~a 2 f q -  k E  q=~laa~.e~.,,. (5) 

Equation (4) is in fact the governing equation for 
convection-diffusion type flows, where the first term 
on the left represents diffusion (heat conduction) and 
the second term, convection. The numerical solution 
corresponding to properly posed boundary conditions 
will be the subject of the following sections. It must 
be noted that, to an observer who is moving with the 
crack-tip coordinate system, the material particles are 
flowing downstream in the opposite direction of crack 
growth (the flow is along the negative x~-axis in Fig. 

1). It is noted that the coefficient fv is a non- 
dimensional constant and fq is a constant with the 
dimension of the temperature, and both are directly 
proportional to the Mach number m. The magnitude 
offx is a measure of the amount of heat convection 
induced by the moving heat source at the crack tip vs 
that of heat conduction in the bulk material during 
dynamic crack growth. 

In structural metals, such as AIS14340 carbon steel, 
the absolute value offT is usually very large when the 
crack speed is a fraction of the elastic shear wave 
speed. For example, the 4340 steel has the following 
relevant parameter values: E = 200 GPa, a0 = 1.49 
GPa, c ~ = 3 2 0 0 m s  - ~ , k = 3 8 . 1 W ( m K )  - ~ , ~ =  l x  
10 -5 m 2 s -I. The critical stress intensity factor value 
(the dynamic fracture toughness) of the material at 
m = 0.22 is approximately K = 90 MPax/m according 
to the experimental measurements by Zehnder and 
Rosakis [28]. When the above parameter values are 
used, fT is found to be on the order of 105 (as a 
comparison, Jq is on the order of 10 6 for this case). 
In this connection, an interesting observation can be 
made from equations (4) and (5) as to how Tdepends 
on K, m and other material parameters. It is noted 
that, when m and hence f r  are sufficiently large, the 
left-hand side of equation (4) is dominated by the 
convection term. Hence it appears that T is almost 
proportional to the ratio between fT and fq. Since J~ 
and fq are identically proportional to K and m, the 
dependence of T on K and m via the ratio 
J~/Jq = - ~aZ /kE  disappears. Thus this dependence, if 
any, must come from the product represented by q. 
However, it is noted that the function q in the non- 
dimensional coordinate system depends only on m 
and not on K and other material parameters listed 
above. As such, it is concluded that T in the non- 
dimensional coordinate system is almost independent 
of K, and its dependence on m derives from those of 
the stress and plastic strain fields and from that of the 
crack-tip active plastic zone. Other material par- 
ameters are expected to influence T mainly through 
the lumped factor ota2o/kE. 

2.4. Boundary  condi t ions 
As stated earlier, we will model the dynamic frac- 

ture tests conducted on AISI 4340 steel plate speci- 
mens, including crack-tip local heating and tem- 
perature distribution. We note that, when the heat 
source is moving rapidly with the crack tip, the near- 
tip temperature variation is mainly determined by heat 
convection due to the moving heat source, and par- 
tially influenced by heat conduction through the bulk 
material. It is therefore reasonable to conclude, on the 
time scale of this problem, that the effect of heat loss 
due to heat convection and radiation on the two boun- 
ding surfaces of the plate can be neglected. Hence we 
only need to consider conditions that may be imposed 
on any boundaries in the x~-x2  plane. Apparently, in 
the case of an infinite domain, the boundary con- 
ditions are given by zero temperature rise or T = 0 at 
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infinity. If a finite domain is used to simulate the 
infinite domain problem, then proper conditions must 
be specified such that the near-tip temperature dis- 
tribution is unaffected by this finite domain approxi- 
mation. In this study, for the moving rectangular 
domain mentioned earlier (see Fig. 2), temperature 
increase along the vertical boundary ahead of the 
crack is set to zero. This is because temperature rise 
ahead of a rapidly propagating crack is practically 
determined by local heating due to energy dissipation 
in the crack-tip plastic zone. In this study, the vertical 
boundary ahead of the crack is located sufficiently 
away from the crack-tip plastic zone so that a zero 
temperature rise is expected. Along the rest of the 
boundary the heat flux (normal temperature gradient) 
is set to zero. For the bottom boundary this is because 
it is a symmetry line. For the left boundary, this is 
because it is a downstream boundary and is sufficiently 
away from the dominant heat source at the crack tip. 
Similarly for the top boundary, this is because it is 
found to be sufficiently far away from the crack tip so 
that the temperature variation there is very slow, We 
have examined with satisfaction the accuracy of the 
boundary conditions chosen above by extensive com- 
parisons with results calculated for the infinite domain 
case. An example is shown in Fig. 6, where tem- 
perature rise along the x~ or x-axis is given. The SUPG 
finite element solution is for the finite domain, and 
the numerical integration result is for the infinite 
domain. It is clear that the temperature distributions 
are almost identical up to the left boundary. The 
difference ahead of the crack tip is physically insig- 
nificant and is due to the difficulty of the numerical 
integration method right ahead of the crack tip (see 
discussions in Sections 3.3 and 4.1). 

3. COMPUTATIONAL ASPECTS 

It is clear from the earlier discussions that we need 
to solve a 2D boundary value problem for a field 
variable T that is governed by a partial differential 
equation of the form 

T,~t~-cT, = D (6) 

where c is a constant and D is a distributed source 
term. Without loss of generality, we assume that the 
coordinates have been nondimensionlized so that c is 
dimensionless and D has the same dimension as T. 
This is the governing equation for a convectio~ 
diffusion flow in x~-direction and the constant e can 
be referred to as the dimensionless flow speed. We 
point out that the direction of flow is along the positive 
x~-axis ifc > 0 and along the negative x~-axis ifc < 0. 
When I cl is sufficiently large, equation (6) governs the 
so-called convection-dominated flow problems. For 
the dynamic crack growth induced heat transfer prob- 
lem in metals, c is of the order of 10 5. 

When Icl >> 1, fictitious numerical oscillations in the 
flow direction will arise if standard finite difference 
or finite element methods are used to calculate the 

solution for such a boundary value problem. 
Although this problem can be corrected by reducing 
the element size of the mesh, it would require the mesh 
to be unrealistically fine. This numerical performance 
versus element size relationship is dictated by the mesh 
or grid Peclet number Pe [26, 27], given by 

Pe = ch/2 (7) 

where h is the dimensionless element size in the flow 
direction. Spurious oscillations will arise when Pe > 1. 
For the dynamic crack growth problem, this node-to- 
node oscillation can be avoided only if the mesh size 
is on the order of 10 -5 (since c is of the order of 
105), which would make the numerical modelling task 
impractical. To overcome this numerical difficulty, an 
upwind technique known as the Streamline Upwind 
Petrov-Galerkin Formulation (SUPG) [25-27] is 
adopted here. This formulation has been shown to 
work well for convection-dominated flow problems in 
one and two dimensions with zero or constant source 
terms. 

3.1. Streamline upwind Petrov-Galerkin formulation 
The SUPG formulation [25-27] as it applies to 

equation (6) is specified here. In this formulation the 
weighted residue statement on a domain f~ is written 
a s  

f w(T,~t~-cT, - D )  d~ = 0 (8) 

where w is a weighting function, which can be ex- 
pressed as the sum of a conventional Galerkin weight- 
ing function, say, Wo, and a perturbation termp, which 
is given in terms of Wo by 

p = k~wo.,/c. (9) 

The dimensionless constant k~ in equation (9) is called 
the artificial diffusivity and should be positive. Its 
value must be chosen properly in order to obtain 
the best performance. Following the arguments by 
Christie et al. [29] for 1D flows and by Hughes and 
Brooks [26] for multi-dimensional flows, the 
expression below can be derived to provide the opti- 
mal value for k, : 

ch 
ka = ~ (coth (Pe ) -  l )  = Pecoth (Pe ) -  I 

(lO) 

where Pe, the grid Peclet number, is determined from 
(7). 

A weak form for equation (8), which will be the 
basis of our finite element discretization, can be writ- 
ten as 

f [(1 +ka)wo,, T~ +wo,2T,2+wocT~] d~ 

= - f  wDdn+ I wnpTadF (11) 
.IF 
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where F stands for the part of the boundary of 
where the normal .gradient of T, given by the product 
(nBTa), is specified, and na represents the components 
of the outward unit normal vector ofF. It is important 
to note that the Galerkin weighting function w0 is 
operating on the left-hand side of (11) while the SUPG 
weighting function w is operating on the right, which 
is the main difference between SUPG and the earlier 
upwinding techniques. When k a is set to zero, the 
conventional Galerkin formulation is recovered. 

A schematic of Lhe finite element mesh used in this 
study is shown in Fig. 2, where four-noded quadri- 
lateral elements are focused near the crack tip, so that 
large gradients of the near-tip stress, deformation, and 
temperature fields can be adequately represented. The 
mesh is designed based on the need of the stress analy- 
sis, but it is also shown to be adequate for the tem- 
perature analysis, as discussed later. The actual mesh 
is composed of a 60 × 30 grid. The size of the largest 
element is 0.7636 while that of the smallest element is 
0.3748 x 10 4. A standard finite element discretization 
procedure then leads to a set of linear algebraic equa- 
tions. The resulting stiffness matrix is asymmetric 
because of the convection term, cT.~, in equation (11). 
As a comparison, it is noted that the stiffness matrix 
from the conventional Galerkin formulation is always 
symmetric. In order to obtain solutions with desired 
accuracy, we find it necessary to solve the linear 
algebraic equations with a successive correction 
scheme. 

3.2. Comparison with conventional Galerkin for- 
mulation 

Comparisons between the SUPG formulation and 
the conventional Galerkin formulation for con- 
vection-domated flow problems are available in the 
literature for one dimensional cases and with zero and 
constant source terms [26, 30]. In order to demon- 
strate the applicability and effectiveness of the SUPG 
formulation to multi-dimensional problems with gen- 
eral source terms, we will analyze a test problem with 
both methods. The test problem is governed by equa- 
tion (6) and is defined on the nondimensional rec- 
tangular domain shown in Fig. 2. The source term D 
is distributed over the entire domain according to the 
expression below 

D(xl,x2) := -2cxl  +2x2 - (2.5+9c) (12) 

where the constant c is identical to that in equation (6) 
and is used here as a parameter. When the governing 
equation is accompanied by the boundary conditions 

T j = 0alongxl = -4 .5 ,  T,2 = 0alongx2 = 0, 

T,2 = 0alongx2 = 4.5, 

T= 81-225x22+x3/3alongx1 = 4.5 (13) 

the solution for T over the rectangular domain can be 
represented exactly by 

T(x,,x2) = (4.5+x,)2-Z.Z5x~+x3/3. (14) 

It must be pointed out that the above specially 
devised boundary value problem has a solution that 
is independent of the parameter c, so that one can 
realize a wide range of Peclet numbers with a fixed 
element size by simply setting c to different values. In 
addition, one can observe how the SUPG formulation 
and the conventional Galerkin formulation behave as 
the Peclet number increases. As is known from analyses 
in the literature, solutions from the conventional 
methods are usually useless when the Peclet number 
is larger than one. However, it happens that, for the 
test problem with a mesh to be described, the solution 
given by the conventional Galerkin formulation 
remains reasonable for Pe up to nearly 100, then it 
becomes divergent and overflows during computation 
when Pe goes higher. On the other hand, the solution 
obtained with the SUPG formulation consistently 
gives very accurate solutions. 

A comparison is shown in Fig. 4 for the variation 
of T in the xl direction for the case of c = 100. The 
rectangular domain is uniformly divided into a 6 × 3 
grid, giving rise to 18 square elements of size h = 1.5, 
and resulting in a Peclet number of Pe = 75, so this is 
a very coarse mesh. It is amazing at first glance that 
for such a coarse mesh and with such a large Peclet 
number, the conventional Galerkin formulation still 
yields overall a very reasonable solution, as demon- 
strated in Fig. 4(a) by the comparison at the nodal 
points with the exact solution, where the variation of 
T is shown along the xl-axis. It is believed that this 
'good behavior' is fostered by the favorable boundary 
condition of large prescribed values of T along the 
boundary x~ = 4.5. However, at places where T is 
small, a node-to-node oscillation can be observed, as 
shown in Fig. 4(b) for the variation of T along 
x2 = 3.0. A remarkable feature of this oscillation is 
that the error it produced over the entire rectangular 
domain forms a periodic cylinderical surface parallel 
to the x2-axis, which resembles a stationary wave 
along the xraxis. Figure 4(c) shows a profile of this 
error surface in the x~ direction. In contrast, the 
SUPG method always gives nodally exact solutions 
even for such a coarse mesh, except along the boun- 
dary x~ = -4 .5  where small errors exist, which is 
believed to be caused by the coarse mesh and the 
inflow gradient boundary condition there. 

3.3. Comparison with numerical integration approach 
As discussed earlier, the distributed source term 

associated with the temperature field induced by 
dynamic crack propagation in elastic-plastic solids is 
strongly peaked at the origin, where its gradient is 
exceedingly large. Such a source term presents a spe- 
cial numerical difficulty by itself, since the solution of 
the governing equation is very much dictated by the 
source term, hence very sensitive to error introduced 
in the numerical representation and integration of the 
distributed source term. Great care must be taken in 
handling such numerical procedures. In order to verify 
that the finite element mesh designed in [19], and 
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Fig. 4. Comparisons between analytic and numerical solu- 
tions: (a) variation of T along xraxis; (b) variation of T 
along x2 = 3.0; (c) variation of error in T from the con- 

ventional Galerkin formulation. 

shown schematically in Fig. 2, can be adopted to 
obtain the temperature field accurately and reliably 
with the SUPG formulation, a test problem that has 
a highly peaked source term and an exact, closed-form 
solution must be devised. 

Another  way to check the reliability of the SUPG 
program is to establish an alternative, independent 
approach to solve the temperature field and compare 

the solution with SUPG. Such an alternative method 
indeed exists and in fact has been used, for example, 
in a theoretical study of the temperature field for mode 
III crack growth in [14]. This method is valid for 
calculating the temperature field in an infinite plane 
induced by a constant heat source moving with a 
constant speed in a fixed direction. Based on the fun- 
damental solution for a unit  moving point heat source 
[31], the solution for equation (6) for an infinite 
domain is given by 

r ( x , ,  x2) = 2~z k 2 j 

x K0(l~l x/[(x, - ~,2 + (x2 - t/,2l) d~ d" (15) 

where exp ( ) refers to the exponential function, and 
K0( ) the modified Bessel function of the second kind 
of order zero [32]. 

However, a severe numerical complication will be 
encountered in evaluating equation (15) when the 
dimensionless parameter c is sufficiently large. This 
numerical difficulty arises because of a peculiar feature 
of the product exp (u)Ko(z), where u is used to denote 
the argument of exp, and z the argument of K0, in the 
integrand of (15). For  example, consider the case 
when the nondimensional  distance d between (~, q), a 
heat source point, and (x~, x2), a point where Tis to be 
calculated, is larger than or equal to 2. When ~ < x~, 
exp (u)Ko(z) decays exponentially as d increases, and 
when ~ > xl,  exp (u)Ko(z) decays exponentially as the 
difference I t / -  x21 increases. In both cases, the decay- 
ing rate is given by c/2. For the problem of dynamic 
crack growth, c is on the order of 105, an incredibly 
large number. As such, for the 9 x4.5 rectangular 
domain, the main contribution to T must come from 
the distributed source in a narrow band parallel to 
the x~-axis, whose width is on the order of 10 -5. In 
addition, the integrand of (15) still has a very deep 
slope in all directions even within this tiny band! 
Imagine the amount  of care and effort needed to cal- 
culate the temperature distribution according to the 
integral representation in (15). Besides, how does one 
assure oneself that the numerical integration one 
carries out is actually accurate? 

Hence the goal of this part of the research is 
twofold. First, we need to seek a test problem that has 
a source term that is highly peaked at the origin and 
that has an analytic, closed form solution, and we need 
to study both the SUPG method and the integration 
approach against the test problem as to the pros and 
cons and limitations of the two methods. Second, 
working within the limitations of these methods, we 
need to obtain the temperature field solutions for the 
problem of dynamic crack growth and carefully com- 
pare the solutions with each other, so as to assure 
ourselves that the temperature fields we obtained are 
mathematically accurate and reliable. This section 
discusses the test problem and make comparisons 
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between the numerical solutions and the exact analytic 
solutions. 

The test problem must be specified for an infinite 
domain, so that the integration method can be 
applied. Note  also that Tmus t  be zero at infinity. Such 
a problem is given here for the governing equation (6), 
with a source term~ of the form 

D(xt, x2) = 2AB[-2+cx 

+ 2 A ( x  2 +x2)] exp [-A(x~ +x22)] (16) 

where A(A > 0) and B are constant parameters and c 
is the dimensionless flow velocity in equation (6). To 
simulate a crack g, rowing in the positive xj direction 
we will consider only negative c values. By adjusting 
the value of  the parameter A, the source term can be 
made to vary from a very smooth to a strongly peaked 
function. The exact solution of  this problem is given by 

T(x,,x2) = Bexp[-A(xZ+x~)]. (17) 

It is noted again that the analytic solution is inde- 
pendent of  the nondimensional flow velocity c, which 
is convenient for studying the effect of  c on the accu- 
racy of  the numerical solutions. 

The above problem is solved with both the S U P G  
method and the numerical integration method. In the 
latter approach the distribution of  Tis  obtained from 
equation (16) with an adaptive Simpson's scheme. 
This numerical in~:egration scheme can automatically 
determine the partitioning of  the integration intervals 
according to the features of  the integrand. In places 
where the integrand is relatively flat, fewer and larger 
intervals are used, while in places where the integrand 
has steep slope, more and smaller intervals are used 
instead. This scheme is extended to two dimensions 
here, which outperforms other techniques such as the 
Gauss quadrature. 

We have studied the test problem for a variety of  
parameter values for A, B and c. The results show that 
the S U P G  methc,d with the mesh shown in Fig. 2 
consistently yields very accurate solutions for all par- 
ameter values, while the accuracy and reliability of  
the numerical integration approach are very sensitive 
to the value of  the parameter e and to the computer  
precision or the number of  digits used to represent a 
number on the computer. It is found that, for a fixed 
computer  precision, meaningful solutions cannot be 
obtained with the numerical integration method when 
[el is above a certain value, even though an automatic 
adaptive scheme is used. As an example, we will look 
at the case when A = 50 and B = 105 and concentrate 
on the solution at the point (0.0, 0.1), where the exact 
solution is T = 60653. The results show that, if 64 
digits are used lo represent a real number on a 
computer,  the integration solution becomes unac- 
ceptable when ]el is somewhat larger than 1 x 103. If  
128 digits are used, the upper limit for Ic] can be 
pushed up to a w.lue somewhere above 1.25 x 105. In 
this regard, we nol:e that the problem of dynamic crack 
growth involves c values just below this upper limit. 

Accordingly, one might be able to use the numerical 
integration approach and obtain reasonable solutions, 
depending on the crack speed and the physical proper- 
ties of  the material in which the crack is propagating. 
Thus for such cases the integration method can be 
used as an independent mathematical  tool for check- 
ing the adequacy of  the solution obtained by the 
S U P G  method. It is worth emphasizing that because 
of  its sensitivity to the value of  c, the numerical inte- 
gration approach in general will yield less accurate 
solution than the S U P G  method. Our study also 
reveals that the S U P G  method is much more efficient 
than the numerical integration approach. Since S U P G  
only needs to use 32-bit digital precision while the 
numerical integration usually requires 64 bits for simi- 
lar accuracy, the S U P G  method is found to be at 
least 10 times faster than the numerical integration 
approach. 

4. CRACK-TIP T E M P E R A T U R E  FIELDS 

The distribution of  temperature increase associated 
with dynamic crack growth in AISI 4343 steel plate 
specimens has been computed in this study for five 
crack propagation speeds, ranging from Mach num- 
ber m = 0.1 to m = 0.35, which corresponds to actual 
crack speeds o f v  = 320 m s -~ to v = 1120 m s 1 The 
specimens are heat treated (quenched and tempered) 
to produce an initial tensile yield strength of  a0 = 1.49 
GPa. The steel exhibits only a weak strain hardening 
behavior, which is approximated here with a bilinear 
stres~strain curve, with the ratio of  the plastic line 
slope vs the elastic line slope being equal to 0.05. Other 
physical properties of  the steel are: E = 200 GPa, 
C s = 3 2 0 0 m s  1, k = 3 8 . 1 W m K  ~,c~= l x l 0 - S m  2 
s ~. For  this material, the value of  the stress intensity 
factor K during dynamic crack growth has been found 
to depend on the crack speed Mach number m in a 
one-to-one manner [28, 21]. The experiments in [28] 
show that when m = 0.22, K = 90 MPax/m. In this 
study, the values of  K at other m values are obtained 
according to the theoretical curve obtained in [21], 
which is shown in Fig. 5 along with the experimental 
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Fig. 5. Relationship between the dynamic stress intensity 
factor during crack propagation and the crack growth speed, 
where the solid line is predicted theoretically [21] and the 

symbols are from experimental measurements [28, 34]. 
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Table 1. A comparison between SUPG and integration 
method 

SUPG Integration 

Tat the crack tip 394.7 K 385.1 K 
Tmax 429.3 K 426.9 K 
Location of Tmax ( -3 .7  × 10 5, 0) ( -3 .7  × 10 5, 0) 
Tat  (-4.5,  0) 56.3 K 57.0 K 

measurements reported in [28] and [33]. A 90% con- 
version rate between the plastic work and heat gen- 
erated is assumed. Other computat ion aspects have 
been discussed in earlier sections. 

4.1. Comparison with numerical integration approach 
Both the S U P G  and the numerical integration codes 

are run on a C R A Y  Y-MP supercomputer at the San 
Diego Supercomputer Center. The S U P G  program 
uses single precision (64-bits) and each run takes less 
than 20 s C P U  time, while the integration program 
requires double precision and each run uses more than 
600 s. The comparisons shown below are for the case 
o f m  = 0.3. 

Table 1 lists the numerical solutions of  the two 

et al. 

methods for several items of  interest, and Fig. 6 pre- 
sents the variation of  the temperature field along the 
x,-axis. We believe that the difference between the two 
solutions right ahead of  the crack tip (see Fig. 6) is 
caused by error in the numerical integration solution. 
Although both results show a steep temperature slope 
at the crack tip, the numerical integration solution 
failed to predict a temperature rise in the rest of  the 
crack-tip active plastic zone, which extends to about 
x = 0.22 ahead of  the crack tip in the nondimensional 
coordinates. This is probably due to its inability to 
integrate accurately the integrand right ahead of  the 
crack tip when the variation of  the integrand is very 
steep, which is exactly the case when the point where 
temperature is being calculated is close to the source 
points. Except for that minor deviation, the agreement 
between the two solutions are excellent throughout.  
Both solutions indicate that the maximum tem- 
perature rise is about 428 K and occurs at a point 
close behind the crack tip, which is consistent with 
experimental findings in ref. [8]. 

4.2. Comparison with experimental measurements 
Shown in Fig. 7 is the variation of  the maximum 

temperature rise (units in degree Kelvin) near the 
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Fig. 7. A comparison of numerically simulated maximum 
temperature rise for various Mach numbers with exper- 

imental lneasurements from ref. [8]. 

crack tip with the normalized crack speed m. The 
numerically simulated results are from the current 
study and the experimental measurements are from 
reference [8]. We wish to mention that more than two 
data points are actually available in ref. [8], but only 
the two shown in Fig. 7 are obtained on tempered steel 
specimens and are from the specimen surface, where 
plane stress conditions are better approximated than in 
the machined grooves of  the specimens. It is clear from 
the comparison that the trend as well as the magnitude 
of the experimenral measurements are well followed 

by our numerical solutions. However, since the finite 
element study is 2D by design while the actual defor- 
mation and temperature fields are 3D by nature near 
the crack tip, caution must be exercised in interpreting 
the above comparison quantitatively until further 
studies are conducted. For the moment, we should 
emphasize the qualitative agreement between the two 
types of data, such as the trend of the temperature 
variation with the Mach number, and the shape of the 
temperature contours shown below. 

Figure 8 illustrates the temperature contours as pre- 
dicted by the finite element simulation, and Fig. 9 the 
contours estimated from temperature measurements 
in [8, 34]. (Similar contours are also reported in [35].) 
The contours for Beta-C titanium [Fig. 9(b)] are 
included because the shape of the contours is mainly 
determined by the distribution of energy dissipation in 
the crack-tip active plastic zone. Since the mechanics 
fields used in this studied, as reported in [19-24], are 
properly nondimensionalized and in principle can be 
used to calculate energy dissipations for crack propa- 
gation in Beta-C titanium, and since the non- 
dimensional mechanics fields, hence the energy dis- 
sipation distributions, are similar in both cases, it is 
believed that a comparison with the temperature con- 
tours of a Beta-C titanium specimen is meaningful. It 
is seen that, qualitatively, the shapes of the contours 
are in reasonable agreement with one another. 
However, quantitatively, the scale of the contour plots 
are very different. This is not surprising ; it is expected 
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Fig. 9. Experimentally estimated temperature contours from refs [8] in (a) and [35] in (b). 

that this 2D, small-strain approximation cannot pos- 
sibly model all 3D and large deformation phenomena 
observed experimentally, such as finite plastic defor- 
mation near the crack tip and the formation of shear 
lips near the specimen surfaces. It is believed that 
the more diffused temperature field observed on the 
fracture specimen surface reflects the fact that in 
reality the near-tip materials can relax more effectively 
than the finite element model, which causes the high 
crack-tip stresses to spread out, possibly forming a 
larger plastic zone, and diffusing the dissipated energy 
into a larger region. What the results of this study 
demonstrate is that a qualitative modelling of the 

dynamic fracture process and its temperature field can 
be achieved with only 2D finite element simulations, 
and that a quantative comparison can probably be 
reached with inclusions of large plastic deformation 
and 3D effects. 

5. S U M M A R Y  A N D  CLOSING C O M M E N T S  

The heat transfer phenomenon induced by crack-tip 
energy dissipation and local heating during dynamic 
crack propagation in elastic-plastic solids has been 
studied with 2D finite element methods and compared 
with experimental measurements. An uncoupled 



Temperature field around a rapidly moving crack-tip 689 

approximation has been employed, where a mechanics 
analysis is performed for the crack-tip stress and 
deformation fields, from which plastic work rate and 
heat source distribution are derived, and a thermal 
analysis is conducted to determine the maximum tem- 
perature increase and the spatial variation of  the tem- 
perature field. The mechanics problem has been solved 
previously by the authors and the solution is used as 
input for the current thermal study. 

The thermal problem is governed by a convection- 
dominated flow equation in an Eulerian type descrip- 
tion with respect to a moving coordinate system cen- 
tered at the crack tip. To avoid numerical difficulties 
related to convec:fion dominated flow equations, the 
applicability of  the Streamline Upwind Petrov-Galer-  
kin formulation to problems with irregularly dis- 
tributed source terms is investigated carefully. The 
adequacy of  alternative methods, such as the con- 
ventional Galerkin formulation and the numerical 
integration approach, are also studied. These methods 
are compared with analytical solutions and with one 
another with rega:d to their accuracy, reliability, and 
limitations. Our extensive research results demon- 
strate that the S U P G  formulation consistently gives 
accurate solutions for all cases studied, while the alter- 
native methods a~-e limited by their ability to yield 
meaningful solutions, if at all, when the finite element 
grid Peclet number or the crack growth speed is too 
large. In particular, it is found that the accuracy of  
the numerical integration method is very sensitive to 
the computer  prec.ision available, and it costs much 
more than the S U P G  method. 

Besides demonstrating the mathematical  accuracy 
and relibility of  the numerical codes developed in this 
study, we have shown that the physical models used 
in the numerical simulation is able to predict reason- 
ably well what is observed in actual dynamic fracture 
tests. It is incredible that the maximum temperature 
rise predicted by the numerical methods matches 
closely, both in magnitude and in trend, with those 
obtained from experimental measurements. It is also 
seen that the shapes of  the crack-tip temperature con- 
tours resemble those estimated experimentally. It is 
believed that the d:!fferences between the scales of  the 
temperature contours are due to modelling limitations 
of  the current study, which adopted a number of  sim- 
plifying assumptions. Three-dimensional finite 
element studies that incorporate finite strain and 
strain rate and temperature dependent material 
properties appear to hold high promise for modelling 
dynamic fracture tests and for predicting thermo- 
mechanical phenomena associated with dynamic 
crack propagation in engineering structures. 

Finally, it must be pointed out that the effect of 
finite-speed heat propagation and the possible for- 
mation of  shock wave around a rapidly propagating 
crack are not  considered in this study. As discussed in 
a series of  papers by Tzou [16-18] using an asymptotic 
expansion method, thermal shock wave will form 
when the speed of  the moving heat source is equal to 

or higher than that of  the heat propagation. To the 
authors '  knowledge, there is yet no full-field numerical 
investigation of  this thermal shock phenomenon 
associated with dynamic crack propagation. As noted 
by Tzou [16-18], the governing equation for this prob- 
lem will change its characteristics when the heat 
propagation speed is equal to or higher than the crack 
growth speed, which may require a different numerical 
approach. The authors believe that this is an impor- 
tant subject and that more studies, such as full-field 
finite element investigations, are necessary. 
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